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The concept of ergodicity and its application to microcanonical systems com- 
posed of few particles of different mases are clarified. The distribution functions 
in position and velocity are theoretically derived and numerically verified. 
Moreover, we deal with a one-dimensional Boltzmann gas where the order rela- 
tion (connected to the one dimensionality) brings constraints depending on the 
two classes of boundary conditions enforced (reflecting, periodic), The numeri- 
cal simulations on a one-dimensional Boltzmann gas act as real experiments and 
allow us to play on the constraints to which the system is subjected. 

KEY WORDS: Boltzmann gas; microcanonical ensemble; ergodic hypothesis; 
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1. I N T R O D U C T I O N  

The study of one-dimensional N-body systems has been a very active field 
in these last 30 years and has produced many interesting results for the 
following reasons. The exact treatment on a computer of such system is 
possible for three interesting cases: the plasma and gravitational gas, hard- 
core segments, and the Boltzmann gas. The Boltzmann gas, the simplest of 
the three cases, is fully treated in this paper and gives nontrivial results, as 
we are going to prove. 

A theoretical treatment is also possible due to the existence of an order 
relation which allows one to perform the integral of statistical mechanics in 
a telescopic way. This fact, first recognized for the plasma by Lenard, r 
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was extended to the hard-core segments (2) and is here applied to the 
Boltzmann gas. 

Although one-dimensional systems often have different behaviors com- 
pared to three-dimensional ones, they may exhibit features which strain the 
theory up to its limit. Such is the difference between the evolution of a 
global population and a test population in plasma physics. (3) Taking a 
large number of particles ( N ~  10,000), we can construct an initial set of 
velocities which takes into account all the particles and then follow its time 
evolution. This set of velocities defines the global one-particle distribution 
function. On the other hand, taking a subset of this global population, for 
example, initially in a range of velocities, we get, in a similar way, the rele- 
vant one-particle distribution function of these "distinguished particles." In 
the plasma case, the global distribution does not relax, while the dis- 
tinguished distribution function relaxes to the global one. Of course all par- 
ticles interact: introducing the "distinguished particles" is only possible in 
a computer experiment, while from a theoretical point of view this concept 
is quite interesting. The one-dimensional Boltzmann gas, if constituted of 
particles of the same mass, shows the same behavior (see Section 2 for the 
dynamics of the Boltzmann gas). In this case only binary interactions 
appear and the relaxation of any distinguished distributions toward the 
global distribution (which does not relax) is rather easy to understand. The 
surprise comes from the plasma case, where all the particles interact with 
each other with long-range forces. We add that in the plasma case this is 
only true to first order in the so-called plasma parameter. 

Now, to be more precise, this work was undertaken with the following 
goals: 

1. To test the ergodic hypothesis for microcanonical systems with a 
low number of particles (two, three, and more). A failure of this 
hypothesis for the gravitational case was reported by Hohl and 
Broaddus, (4) Reidl and Miller, (5) and Mineau eta/ .  (6) 

2. To study the case of particles of different masses. In the 
one-dimensional Boltzmann gas this hypothesis is needed to avoid 
trivial global behavior. It turns out that this case points out the 
correct way to build the uniformly dense energy hypersurface. 

3. To check the differences between reflective and periodic bound- 
aries (especially important for small systems). 

The remainder of the paper is organized in four sections. Section 2 
gives the model and the numerical code. The treatment for reflective 
boundaries, first of the velocity space, then of the configuration space, is 
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given in Section 3. The two parts of Section 4 deal with the same questions, 
but for the periodic boundary case. Finally, our conclusions are given in 
Section 5. 

2. M O D E L  A N D  N U M E R I C A L  C O D E  

The one-dimensional system is composed of points constrained to 
move on a straight line. The particles are hard-core particles and interact 
only when they collide. During a collision, kinetic energy and momentum 
are conserved. Due to the fact that the potential is infinite, particles are not 
allowed to cross each other. This is the origin of an order relation which 
will play a central role in the theory. 

If the particles have the same mass, they exchange their velocity in the 
collision. Another point of view is to say that the particles freely pass 
through each other keeping their velocity. Then all the particles have a free 
motion. In order to obtain some change, one must consider a system of 
particles of different masses. 

Two kinds of systems have been studied. For  the first one, the particles 
are confined in a box with reflective edges. When a particle reaches one 
edge, its velocity is inverted. This procedure does not conserve the total 
momentum, but keeps constant the kinetic energy, which is the only 
invariant of the motion. In addition, because of the shape of the potential, 
the first particle is always localized between the left edge and the second 
particle; this second particle is localized between the first and the third one; 
and so on. In the second case the system is periodic and when a particle 
leaves the box through one side, it enters the other side with the same 
velocity. The system can be visualized as a circle where the edges gathered 
at a single point can take place anywhere on the circle. 

In the case of a one-dimensional system, the motion of the particles is 
very easy to treat. Between two collisions, the particles have a free motion 
and the program has just to compute the collision times between all pairs 
of neighbors, to find the smallest of these collision times, to give the new 
position and velocities to the corresponding pair of particles (these posi- 
tion and velocities after the collision are now the new initial conditions of 
motion of these two particles), and to reiterate the calculation. As a 
collision does not concern all the particles, we do not need to update the 
positions and velocities of all the particles, provided we keep for each the 
time at which its position and velocity were recorded. Obviously for each 
kind of edge a special treatment has to be added to the general scheme. 
Note that this scheme is exact and introduces no error except the roundoff 
errors due to the finite number of digits. ~7) When N increases, the sorting 
out of the next smallest collision time very quickly absorbs the quasitotality 
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of the computer time if special techniques are not used. (8) This is, of course, 
of no importance for small N. 

The subscript i in the variables of position xi, velocity v i, and mass mi 
is connected to the ith particle by order of increasing position (for all the 
simulations in the case of reflecting edges and at the initial time in the 
periodic box case). The positions of the edges are -Xo and x0, where 
x0 = 0.5. Twice the total energy is set to one for all the simulations. 

3. REFLECTING-EDGE BOX 

Let us first consider the case of the reflecting-edge box. Then the only 
constraint of the system is the total energy. 

Numerical simulations have been performed with various numbers N 
of particles of different masses, which allows us to construct the velocity 
distribution function for each particle. This is done by collecting the 
velocities at regular time intervals At, where At is large enough to ensure 
a few collisions between two particles preventing two successive samples 
from being too correlated. Before a particle of mass m collides with its 
neighbor, it travels a mean distance of 2xo/N, with a mean velocity of 
(2E/mN) m (this will be verified by the equipartition of the energy E). 
Taking the largest amount of time given by the heaviest particle, we 
roughly consider At = 10-2xo(m/2EN) m. The time of the simulations is set 
to ensure a set of 10,000 data. Initial positions and velocities are taken at 
random under the constraints of the system (total energy, etc.). 

The microcanonical theory tells us that the point must be taken at 
random with uniform density on the surface of constant total energy, the 
axis being p (momentum axis). Since usually the masses are equal, we can 
take v or p = my. Here with different masses we must take as axis the value 
pi/m~/2 (or m~/2vi) in order to recover the experimental results. Note that 
the equipartition of the energy for all particles is consequently automati- 
cally obtained. This need of taking pi/m]/2 to obtain the uniform density on 
the constant-energy surface is hardly mentioned in statistical physics books. 

In the Boltzmann-gas case, the total energy reduces to kinetic energy. 
For  N = 3, the corresponding surface is a sphere of radius equal to the root 
of twice the total energy E. Taking constant the probability of finding the 
system at each point on the surface and projecting on each axis, one finds 
the distribution function in "velocity" of one particle. This calculation is 
extended to every value of N and reads (see Appendix A for details) 

1 
fN (z~) = (1 -- Z~)(N-- 3)/2 ( 1 ) 

NormN_2 
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where Norton is a factor of normalization given by 

( 2 N -  1)!! 
Norm2u -- 2n z . . . .  (2) 

(2N)!! 

(2N)!! 
Norm2u+l = 2 (2N+ 1)!! Zm~x (3) 

using the notation of Gradshteyn and Ryshikt9): !! means the product of all 
even (or odd) numbers from the indicated one to two (or one). The 
normalized variable zi reads 

m]/2vi 
zi = (4) 

Z m a x  

where Zmax is the maximum possible value independent, in this case, of the 
mass of the particle: 

Zrnax : (2E) 1/2 (5) 

Results of numerical simulations for systems containing, respectively, 
N =  3, 4, and 5 particles are given in Figs. la- lc .  The distribution function 
of one of the particles of each system is represented with a histogram shape 
and the theoretical function is drawn as a continuous line. Numerical 
experiments have been performed for up to six particles showing a very 
good agreement with the theory. 

Obviously, increasing in formula (1) the number of particles to infinity 
while keeping the energy per particle e = E/N fixed will yield the Maxwell 
distribution function. The variable ml/2v appears explicitly. 

The case N = 2 exhibits a certain lack of ergodicity. The phase portrait 
in velocity space (see Fig. 2a) shows that after a rather long time the circle 

f ( z )  N = 3  f ( z )  N = 4  f ( z )  N : 5  

f O.OL A ~  , J O0 0.0 

-2 -1 0 1 2 -2  -1 0 1 2 -2  -1 0 1 

Z Z Z 

( a )  (b )  (c)  

F ig .  1. V e l o c i t y  d i s t r i b u t i o n  f u n c t i o n  o f  o n e  p a r t i c l e  o f  a s y s t e m ,  c o n f i n e d  in  a r e f l e c t i n g - e d g e  

b o x ,  c o n t a i n i n g  ( a )  N =  3 p a r t i c l e s  o f  m a s s  m I = 1, m z = 3, a n d  m 3 = 6; ( b )  N =  4 p a r t i c l e s  o f  

m a s s  m I = 1, m 2 = 3, m s  = 6, a n d  m 4 = 11; (c)  N =  5 p a r t i c l e s  o f  m a s s  m a = 1, m 2 = 3, m 3 = 6, 

m 4 - -  11, a n d  m s =  19. 
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p(o) f(~,) f(z,) 

1 
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0 ~ / 2  ~ 3 ~ / 2  2v - 2  - 1  o 1 ~ - 2  -1  o 1 2 

0 Z~ Z~ 

(a) (b) 

Fig. 2. Results for N= 2 particles of mass ml = 1 and m 2 = 5 ,  confined in a reflecting-edges 
box. (a) Histogram of the repartition of the representative point on the circle in volocity 
space; (b) velocity distribution function for particle 1 and for particle 2. 

is not uniformly covered. Figure 2b shows the resulting f2(zi) and f2(z2). 
The reason is the following. First, let us define C as a collision between the 
two particles and I as a collision of one of the particles with an edge (I only 
changes the sign of one of the velocities). Two successive collisions (CC) 
between the same two particles will bring back the two velocities to their 
initial values. Of course this kind of event can only happen with two 
particles moving in a periodic edge box. In the present case, one particle, 
at least, must collide with a wall. If  only one particle experiences a wall 
collision, the next particle collision (CIC) will change the velocities. But if 
both particles collide with the wall (CIIC), the next particle collision will 
bring back the velocities (or opposite velocities) experienced before the first 
particle collision, 

CI IC = +_1 (6) 

Note that the employed notation does not take care of the label of the 
particle which collides with the edge because it has, in fact, no importance: 
if the two collisions with the wall (II) concern the two particles, the 
sequence CI IC  is equal to - 1 ,  and is equal to 1 if I I  concerns the same 
particle. Obviously such a situation never arises in a real simulation, but 
can be envisaged in the analysis of a given sequence. Consider, for example, 
the following sequence: 

C I C I C I I C I C  (7) 

Since the underlined sequence CI IC = +__1, ignoring the trivial change of 
sign, we can simplify by CI IC and obtain 

CICI IC  (8) 
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The final result for this example is CI, and this sequence gives in fact only 
two new points in velocity space. This explains briefly the very low 
efficiency of long sequences. 

Finally, for special values of the mass ratio, the points in velocity 
space will be trapped on a finite number of sites. We have proved, for 
example, that a ratio of 3 gives only 12 possible sites and (xfl2+ 1)/ 
( x f 2 - 1 )  only 16 (the entire proof will be given in a future paper). 
Consequently, these cases are not relevant to the ergodic theory. 

The density of the three-dimensional Boltzmann gas is homogeneous. 
Such a property cannot be obtained in the one-dimensional system because 
of the order relation of the positions of the particles. 

Nevertheless, supposing that the density of the representation point in 
the N-dimensional configuration space is homogeneous with respect to the 
constraint - X o < X l < X  2 and so on, we can obtain the cutoff x ~ - x 2 ,  or 
x 2 -  x3 ..... of this configuration space. The distribution in position of one 
particle can then be deduced. It depends on the relative position of the 
particle but not on its mass. The position distribution function of particle 
i in a system containing N particles reads (see Appendix B for details) 

N! (Xo-Xi)  N-i (Xo+Xi) ~-~ 
Pi(x)=(2Xo) u ( N - i ) !  ( i -  1)! (9) 

The results for a simulation containing N = 3 particles are given in Fig. 3, 
with the theoretical value shown as a straight line. The theoretical curve fits 
the experimental one. The summation of the three distribution functions 
gives a constant density over all the box as shown in Fig. 4 in the case of 
the previous simulation. 

This fact could be related to a simple thermodynamic result. Consider 
a box containing three gases (or more) of density nl, n2, and tl 3 constituted 
of particles of mass m l, m2, and m3, respectively, and separated by 
moving, perfectly reflecting walls. These walls ensure that the three gases 
are not mixed and keep their relative positions as the hard-core particles in 

p(x,) 

Fig. 3. 

! Xt~Xo I 

P o s i t i o n  d i s t r i b u t i o n  f u n c t i o n  of  one  par t ic le  o f  a sys tem,  conf ined  in a ref lec t ing-edge 

box,  c o n t a i n i n g  N = 3 par t ic les  of  mass  m I = I, rn 2 = 3, a n d  m3 = 6. 
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p(~) 
2 

-1 X~Xo 

Fig. 4. Sum of the three distribution functions give Fig. 3. 

our system do. After a transient time, the different pressures on the walls 
will be the same, and supposing that the temperatures of the different gases 
are also equal, i.e., supposing thermodynamic equilibrium (in order to 
follow the equipartition in energy of the hard-core particle system), the 
densities will be equal (nl = n2 = n3).  Consequently, neglecting the nature of 
the different gases, the density all over the box will be constant. In our 
system, the walls are not strictly localized but are symbolized by the 
collisions between two particles. Nevertheless, one particle mimics the 
behavior of a very large system. This shows that, in a certain sense, the 
behaviors of very large and small systems are not so different. 

4. PERIODIC BOX 

Let us now consider the case of a periodic box. The system is thus 
subjected to the conservation of both total energy and total momentum. 

The total momentum is equal to zero and the center of mass of the 
system is put initially in the center of the periodic box. As in previous 
cases, the representative point of the system is supposed to be uniformly 
distributed on the allowed surface (or hypersurface) which is the inter- 
section between the sphere (or hypersphere), due to the conservation of 
energy, and the plane (or hyperplane), due to the second invariant. 
Supposing that the reflective edges of the previously studied system 
play the role of one particle of infinite mass, one can deduce from (1) the 
theoretical value of the distribution function in the case of a periodic box: 

1 fN(zi) (1 - -  Z2)  ( N -  4)/2 (10) 
Norm N- 3 

NormN is the normalization factor defined by (2) or (3) and zi . . . .  the 
maximal value of z i defined by (4), is given by the technique of Lagrange 
multipliers (see Appendix C for details): 

N F/ 
Z2 ~)=l,jva i Zj 

/ m a x =  w N  n~ 2 e  (11) 
z. , j= 1 j 
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Formula (10) is similar to formula (1) except for the power ( N - 4 ) / 2  and 
the value of zi . . . .  as a result of the conservation of momentum. The same 
shape of the distribution function is obtained in both cases if the periodic 
system contains one more particle than the reflective-edges system. As in 
the previous case, upon increasing N to infinity while keeping e = E/N 
constant, one recovers the Maxwellian. 

Numerical simulations have been performed for different numbers of 
particles and masses. The data have been collected in the same way as 
previously and the results for N =  3, 4, and 5 particles are respectively 
given in Figs. 5a-5c. The agreement with theory is quite good, as shown by 
the fitting between theoretical and experimental curves. Notice that the 
theory is valid even for N =  3, which corresponds to N =  2 in the case of 
a reflective-edge box, where a lack of ergodicity appears in the previous 
section. 

For  the density, the situation is a little more complicated than for the 
reflective-edges system. Particles can freely pass from one edge to the other 
and although all combinations of positions are not possible, the previous 
order relation is no longer preserved. Considering the steadiness of the 
center of mass, as long as no particles have reached an edge, or when one 
or two particles have passed from one edge to the other, one can obtain the 
phase portrait of xl - x2 or x2 - x3. 

In the case N = 3 the phase portrait is easily obtained by considering 
the different cases where zero, one, or two particles have crossed the 
system. 

If no particles have reached the edges, the constraints are 

3 

mixi-~-O , - - X o < X l K X 2 < x 3 . < x  0 ( 1 2 )  
i = 1  

oo,, ,i looi 
o . o ~  o . 0  

N=4 f(z)  N=5  

-~ ~I o I ~ -2 -I o 1 2 -2 -i o 1 2 

z z z 

(a) (b) (c) 

Fig. 5. Velocity distribution function of one particle of a system, confined in a periodic box, 
containing (a) N =  3 particles of mass  m 1 = 1, m2 = 3; and m 3 = 6; (b) N =  4 particles of mass 
r n l = l  , m 2 = 3  , m 3 = 6 ,  and m 4 = l l ;  (c) N = 5  particles of mass m l = l ,  m 2 = 3 ,  m 3 = 6 ,  

m 4 = 11, and m 5 = 19. 
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and give the allowed area of the representative point: 

m 1 m l  q- m 2 
X l < X 3 <  - - x  I (13) 

m 2 + m 3 m 3  

If, for example, particle 1 crosses the left side and consequently enters the 
box through the right side, the constraints are 

3 

mixi=2mlxo,  - -Xo<X2<X3<Xl<X 0 (14) 
i = 1  

The allowed area, in this case, reads 

rnl xl + 2 m~ 
- -  - - X o < X 3 < X I  (15) 
m 2 q- m 3 m2 + rn3 

The different cases have to be studied, but it can be proved that only two 
particles at most can cross the edges, whatever the relative values of the 
masses of the three particles are. If m 1 < m2 + m3 and m 3 < rn 1 + m2, 
particle 1 can leave the box through the right side and particle 3 through 
the left side. If m3 > ml + m 2 , particles 1 and 2 can leave the box through 
the left side and if m~ > m 2 +  m3, particles 2 and 3 can leave the box 
through the right side. 

Figure 6a gives the theoretical phase portrait of the position of particle 
3 versus particle 1 for m 3 = m~ = m2/3 (particles 1 and 3 can leave the box) 
and Fig. 6b gives the experimental one. 

The position distribution function can be easily derived from the phase 
portrait such as those given in Fig. 6b for each of the three particles, 

-I i _ _  

XJXo 

"~ 0 

- 1  0 
x l /x~ 

(a) (b) 

Fig. 6. Posi t ion xz  versus posit ion xl  for a system containing N =  3 particles of mass  ml = 1, 
m2 = 3, and rn 3 = 1 confined in a periodic box. (a) Theoretical phase portrait.  The shaded area 
gives the allowed surface. (b) Experimental  phase  portrait.  
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p(x3 

4 , " 

i= l  . i=g 

Fig. 7. Pos i t ion  distribution funct ion of  one particle of  a system, confined in a periodic box, 
containing N =  3 particles of  mass  m I = 1, m 2 = 3, and m3 = 1. 

supposing the probability of the point to be uniform in the shaded area 
(see Fig. 7). 

The results of the simulation for the case ml = 1, m2 = 3, m 3 --- 6 (par- 
ticles 1 and 2 can leave the box), previously studied, with reflective edges 
(Section 3), are given in Figs. 8a and 8b (theoretical and experimental 
phase portraits) and Fig. 9 (position distribution function). 

Contrary to the previous case, the summation of the three distribu- 
tions does not give a constant. Nevertheless, when the three masses are 
nearly equal this distribution goes to a constant. 

On the other hand, if the total momentum is not initially set to zero, 
the distributions of each of the particles are constant all over the box. 

5. C O N C L U S I O N  

The study of this very simple system, the Boltzmann gas, allows us to 
obtain theoretical results as well as to perform exact numerical simulations. 

In both cases, with reflective edges and a periodic box, ergodicity is 
obtained. Nevertheless, for two particles moving in a reflective-edge box, 

Fig. 8. 

/ - ? , - - -  
\ 

i 

/ 
/ 

- 1  

- 1  

/ 
/ 

/ 
/ 

/ 

0 

x / x ~  

(a)  

Pos i t ion  X2 Versus pos i t ion  x l  for a system conta in ing  

0 

x , / / x ~  

(b) 

N = 3 particles of  mass  ml  = 1, 
m 2 = 3, and m 3 = 6 confined in a periodic box. (a) Theoretical  phase portrait.  The shaded area 
gives the a l lowed surface. (b) Experimental  phase portrait.  

822/71/1-2-!5 
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of!X , -3 1 

i 
�9 - \ i = l  

0 

- X J X o  

Fig. 9. Position distribution function of one particle of a system, confined in a periodic box, 
containing N = 3 particles of mass ml = 1, m2 = 3, and m 3 = 6. 

the dynamical process does not drive so easily toward ergodicity, while for 
special values of the mass ratio the system is not ergodic at all. 

The main result of the simulation is that uniform-density surface 
theory is valid if applied to the "right" variable P/x/--m, where P is the 
momentum and m the mass of a particle. Consequently, whatever masses 
the particles take (except if all are equal), the theoretical distribution 
functions are recovered, depending only on the number of particles the 
system contains. 

The equipartition of the kinetic energy, a property of the canonical 
ensemble, is consequently automatically recovered in this case, a conse- 
quence of the equiprobability of finding the representative point on the 
sphere (or hypersphere). Sometimes the concepts of ergodicity and nonin- 
tegrability are vaguely associated. Consequently, it may be interesting to 
underline that the system is piecewise integrable (see the numerical code, 
Section 2), but nevertheless ergodic. Only the succession of the collision 
times, although it is exactly calculated by the code, gives an idea of a 
random process which changes the velocities of the particles (but only if the 
masses are different). On the other hand, some systems (for example, 
reflective edges, N =  2, mass ratio of 3) exhibit a nonergodicity which 
comes from the special property of the collision matrix, while they are no 
more or less piecewise integrable than the others. 

The Boltzmann gas is usually associated with a uniform distribution of 
position. This is valid for the three-dimensional case. Nevertheless, the one- 
dimensionality imposes an order relation which keeps the memory of the 
initial values of the positions. However, for a periodic box, invariance by 
translation is recovered if the momentum is not strictly zero. 

Due to the infinity of the potential, the constraint of the order relation 
between particles imposes the position distribution functions shown above. 
Nevertheless, a system in which particles are allowed to cross each other 
(and consequently interact with a finite potential) can be introduced to 
obtain constant values of the position distribution functions. 
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At least this paper has given a good demonstrative illustration of the 
computer approach of ergodic theory and of phase space properties for a 
system that finally is not so trivial. 

APPENDIX  A 

Here were calculate the theoretical 'velocity" distribution function in 
the case of a reflective-edge box. The representative point of the system 
containing n particles is on a hypersphere. The projection on an axis of the 
element dV, of the total hypersurface V,, of the hypersphere gives the 
contribution dz, and then one writes 

f (z )  dz = p(Vn) dV, (A.1) 

where p(V.)  is assumed to be a constant which much normalize to 1 the 
probability of finding the point on the total surface: 

1 
p(V,)  = nV-- (A.2) 

Then 

1 dV~ 
f ( z )  = (A.3) 

V, dz 

For N = 2  particles, the representative point is on a circle of radius 
R = (2E) 1/2. The coordinates are z~ = m~/2v~ for i = 1, 2. With the notations 
of Fig. 10 one writes 

cos0=I  
dR sin 0 = R cos 0 dO = dz (A.5) 

Z~ = ~ 2 V a  

~ t ~ IV 

Fig. 10. 
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and 

SO 

For N =  3 particles: 

with 

For N particles: 

N V  2 = R dO 

V2 = 2 ~ R  

1 1 
f ( z )  = ~ [1 - ( z / R  ) 2 ] 1/2 

d V  3 = 2rffR cos O ) R dO 

V 3 = 47tR211 = 4rcR 2 

I, cos" 0 dO 

d V ,  = 2 ( ' -  1)gln_ 3(R COS o)n- 2R dO 

Vn=2nT~Rn-l[n_ 3 "In_ 2 

With the help of Eqs. (A.4) and (A.5), (A.12) reads 

d V ,  = 2" + lTzI~_ 3 R ~ -  2 1 -  

Using Eq. (A.13), one finds 

f ( z )  = 2 R I ,  _ 2 

A P P E N D I X  B 

Rouet e t  al. 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

dz (A.14) 

(A.15) 

Here we calculate the theoretical position distribution function in the 
case of a reflective-edge box containing N particles. 

The distribution function p(x i )  for particle i is found by cutting the 
configuration space at xi = const, then applying successive integrations and 
taking into account the relation order 

- - X o < X  1 "" " X i _  1 < X i < X i _ t _  1 "" " X N • X  0 (B.1) 
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X 

Fig. 11. 

X~-t 

This leads to Fig. 11 and the following telescopic integral, where it has 
been supposed that the available area (shaded area in Fig. 11) is uniformly 
distributed: 

D(xi)  . . . .  ( x i -  x i _  2) dx i  2d, x i _ 3 . ,  d x  1 
--xo i--4 i--3 

f~xo ff-i+3 fxi+2 
X " "  ( x i + 2 - x i ) d x i + 2 d x i +  3. d x  N 

i i xi 
(B.2) 

After a little algebra, one finds 

1 (X 0 - -  Xi)  N i (X 0 ~_ x i ) i - - I  

P(X~)=S~ - -  ( N - i ) !  ( i -  1)! (B.3) 

with SN = (2Xo)N/N!, which corresponds to the total available volume of 
the hypercube of dimension N, taking account of relation (B.1). 

A P P E N D I X  C 

Here we calculate the maximal value of z i = Zim~x for a system of N 
particles enclosed in a periodic edge box. 

It is given by the equation 

N 

E ~}=2E (c.1) 
j = l  

under the constraint 

N 

Z m)/%=O (c.2) 
j = l  
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Apply ing  a smal l  pe r t u rba t i on  dzj to each var iable  and  suppos ing  dzi = 0, 
since we are look ing  for the m a x i m u m  value of zi, (C.1) and  (C.2) read, 
respectively,  

N 

2 z jdz j=O (C.3) 
j = l , j # i  

N 

Z mJ/ZdzJ =0  (C.4) 
j = l , j ~ i  

Mul t ip ly ing  (C.3) by/~  (Lagrange  mul t ip l ie r )  and  summing  with (C.4), one 
ob ta ins  

N 

(#zj+ m)/2) dzj=O (C.5) 
j = l , j ~ i  

which gives the value of 

rn 1/2 
z j = -  j (C.6) 

# 

for each value of j =  1, 2 ..... N (with j r  The  value of # is given by 

pu t t ing  Eq. (C.6) into Eq. (C.2), which gives the value of zj with the help 
of  Eq. (C.6), Pu t t ing  the value of  z i in Eq. (C.I ) ,  one finds 

u m 
zZm,x = Z j = x ' j ~ i  i 2 E  (C.7) 

N m 
~ j =  1 j 
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